A Convexity Lemma and Expansion Procedures for Bipartite Graphs
نویسندگان
چکیده
A hierarchy of classes of graphs is proposed which includes hypercubes, acyclic cubical complexes, median graphs, almost-median graphs, semi-median graphs and partial cubes. Structural properties of these classes are derived and used for the characterization of these classes by expansion procedures, for a characterization of semi-median graphs by metrically defined relations on the edge set of a graph and for a characterization of median graphs by forbidden subgraphs. Moreover, a convexity lemma is proved and used to derive a simple algorithm of complexity O(mn) for recognizing median graphs.
منابع مشابه
META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملBalanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations
A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...
متن کاملThe p-median and p-center Problems on Bipartite Graphs
Let $G$ be a bipartite graph. In this paper we consider the two kind of location problems namely $p$-center and $p$-median problems on bipartite graphs. The $p$-center and $p$-median problems asks to find a subset of vertices of cardinality $p$, so that respectively the maximum and sum of the distances from this set to all other vertices in $G$ is minimized. For each case we present some proper...
متن کاملBlow-Up Lemma
The Regularity Lemma [16] is a powerful tool in Graph Theory and its applications. It basically says that every graph can be well approximated by the union of a constant number of random-looking bipartite graphs called regular pairs (see the definitions below). These bipartite graphs share many local properties with random bipartite graphs, e.g. most degrees are about the same, most pairs of ve...
متن کاملDerandomizing Isolation Lemma for K3, 3-free and K5-free Bipartite Graphs
The perfect matching problem has a randomized NC algorithm, using the celebrated Isolation Lemma of Mulmuley, Vazirani and Vazirani. The Isolation Lemma states that giving a random weight assignment to the edges of a graph, ensures that it has a unique minimum weight perfect matching, with a good probability. We derandomize this lemma for K3,3-free and K5-free bipartite graphs, i.e. we give a d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 19 شماره
صفحات -
تاریخ انتشار 1998